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Abstract–Multimedia computing requires support for heterogeneous data types with dif-

fering storage, communication, and delivery requirements. Continuous media data types

such as audio and video impose delivery requirements that are not satisfied by conventional

physical storage organizations. In this paper we describe a physical organization for multi-

media data based on the need to support the delivery of multiple playout sessions from a

single rotating-disk storage device. Our model relates disk characteristics to the different

media recording and playback rates and derives their storage pattern. This storage organi-

zation guarantees that as long as a multimedia delivery process is running, starvation will

never occur. Furthermore, we derive bandwidth and buffer constraints for disk access and

present an approach to minimize latencies for non-continuous media stored on the same de-

vice. The analysis and numerical results indicate the feasibility of using conventional rotating

magnetic disk storage devices to support multiple sessions for on-demand video applications.
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1 Introduction

Files comprised of multimedia data are different from conventional data files in many re-

spects. As shown in Table 1, multimedia data, and hence files, consume enormous space

and bandwidth relative to program files or “text” documents. For example, a single feature-

length JPEG-compressed movie can require over 2 Gbytes of memory for digital storage.

Multimedia data can also be sensitive to timing during delivery. When a user plays-out or

records a time-dependent multimedia data object, the system must consume or produce data

at a constant, gap-free rate. This means that the file system must ensure the availability of

sufficient data buffer space for the playback or recording process. For example, to maintain

a continuous NTSC-quality video playback, a file system must deliver data at a rate of 30

frames/s. Moreover, the delivery mechanism must also satisfy the intermedia synchroniza-

tion requirement among related media (e.g., the lip synchronization between audio, video,

and subtitles).

Table 1: Properties of Multimedia Data

Data Type Buffer/Bandwidth
Single text document (HTML) ≈ 80 Kb/document
Voice-quality audio (8 bits @ 8 KHz) 64 Kb/s
CD quality audio (stereo @ 44.1 KHz) 1.4 Mb/s
NTSC-quality video (uncompressed @ 5.9 Mb/frame
512 × 480 pixels, 24 bits/pixel) (177 Mb/s)
JPEG-compressed NTSC video ≈ 7 Mb/s — 3.5 Mb/s
MPEG-I-compressed NTSC video ≤ 1.5 Mb/s
MPEG-II-compressed NTSC video ≤ 10 Mb/s
HDTV-quality video (uncompressed @ 28.7 Mb/frame
1248 × 960 pixels, 24 bits/pixel) (863 Mb/s)

A multimedia file system must reconcile the deficiencies of conventional storage subsys-

tems. A typical storage subsystem accesses data by positioning its read heads at the desired

location for a data block. A random allocation approach, regardless of the time-dependency

for multimedia data, increases the head and seek switching frequencies and resultant access

latency. In addition, the electro-mechanical nature of secondary-storage devices requires the

use of scheduling disciplines modified to meet the throughput and real-time requirements

of multimedia data delivery. When a multimedia file system transfers data from a disk,

it must guarantee that multimedia data arrive at the consuming device on time. It must

also meet the timing requirements of the multimedia object; however, this task is difficult
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due to the unpredictability of disk seek latencies. Furthermore, in a multitasking system,

more than one user can request multimedia or non-real-time services, thereby requiring the

management of multiple sessions. In contrast, the data allocation and scheduling strategies

for conventional file systems are only concerned with the throughput, latency, and storage

utilization for random access to files. Therefore, we seek to provide real-time behavior for a

set of multimedia sessions originating from a single storage system; typically a conventional

rotating-disk magnetic storage device. Note that we constrain ourselves to cases in which

the aggregate bandwidth of sessions is less than or equal to the capacity provided by a single

device; we do not consider RAID or other data distribution approaches in this context.

A number of related works exist in this area. The problem of satisfying timing require-

ments for multimedia data has been studied as a conceptual database problem [11], as an

operating system delivery problem [1, 12, 13, 22], as a physical disk modeling problem [6, 9,

10, 18], and as a physical data organization and performance problem [5, 7, 8, 14, 21, 23, 24].

Rangan et al. [16] propose a model for storing real-time multimedia data in file systems.

The model defines an interleaved storage organization for multimedia data that permits the

merging of time-dependent multimedia objects for efficient disk space utilization. In a re-

lated work, Rangan et al. [15] develop an admission control algorithm for determining when

a new concurrent access request can be accepted without violating the real-time constraints

of existing sessions. Polimenis [14] shows that the hard requirement for the acceptance of

a set of real-time sessions is the availability of disk bandwidth and buffer space. Gemmell

and Christodoulakis [8] establish some fundamental principles for retrieval and storage of

time-dependent data. A theoretical framework is developed for the real-time requirements

of multimedia object playback. Storage placement strategies for multichannel synchronized

data are also examined. P. Yu, Chen, and Kandlur [24] present an access scheme called the

grouped sweeping scheme (GSS) for disk scheduling to support multimedia applications by

reducing buffer space requirements. C. Yu et al. [21, 23] describe approaches to interleaving

time-dependent data to support constant playout rates. Tobagi et al. [20] develop a Stream-

ing RAID approach to handle video traffic on a disk array. Chiueh and Katz [4] propose

a multi-resolution video representation scheme based on Gaussian and Laplacian Pyramids,

which allows the parallel disk array to deliver only the absolute minimum amount of data

necessary.

In this paper, we propose a physical data organization and file system for multimedia

data. We interleave different media objects within a block so as to maintain temporal

relationships among those objects during retrieval (Fig. 1). We also define an allocation

policy based on the contiguous approach to prevent frequent head movement that can cause
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significant seek latencies and to support editing on multimedia files. The behavior of a

conventional magnetic rotating-disk storage device is analyzed with respect to the mean and

variance of the seek latency.

disk track

block i

video

audio

text

reserved

Figure 1: Physical Storage Organization for a Rotating Disk Device

A round-robin scheduling discipline is chosen for the service of multimedia sessions as in

other work [12, 14, 17], permitting the disk to switch alternately between multimedia tasks

and other non-real-time tasks. The file system achieves a high disk bandwidth utilization

by assigning long disk reads or writes and thus sharing the seek and latency delays among a

large number of bits read or written, resulting in a small overhead per transferred unit. We

introduce a disk access schedule which is a refined model based on the work of Polimenis

[14]. We show the constraints which must be satisfied to permit the acceptance of a set of

multimedia sessions including bandwidth and buffer considerations. This work differs from

other approaches in that we establish a probabilistic model for our disk access schedule to

accept a set of sessions rather than using a guarantee of a worst case for the frequency of

starvation.

The remainder of this paper is organized as follows. In Section 2 we describe the storage

organization and allocation policy for multimedia objects to facilitate disk bandwidth uti-

lization. In Section 3 we analyze the probabilistic behavior of disk seek latency. In Section

4 we show an access schedule for the disk and present a periodic service discipline for multi-

media objects based on the probabilistic model. In Section 5 we describe how this schedule

reduces the required buffering and increases the number of supported multimedia sessions.
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Section 6 concludes the paper.

2 Storage Organization for Multimedia Objects

Most existing storage server architectures employ random allocation of blocks on a disk.

This type of organization is not sufficient to meet the real time requirements of multimedia

applications because the disk latency between blocks of a media object is unpredictable [17].

The file system cannot guarantee satisfaction of the deadline for the retrieval of multimedia

data.

We view a multimedia object as an entity comprised of mixed-type data components.

Without loss of generality, we model a typical multimedia object as being comprised of

audio, video and text. These three components can be viewed as distinct even though they

might be recorded at the same time [17]. During retrieval, these three streams are sent to

three output queues for playout and ultimately are experienced by the user. From a timing

perspective, the data streams can arrive at the file system with specific implied timing (e.g.,

live audio) or can arrive at the file system arbitrarily. For example, live video and audio can

be recorded at the same time while subtitles are recorded later.

This leads us to the issue of data interleaving for maintaining intermedia synchronization.

The advantage of interleaving multiple data streams into a single layout is the preservation

of timing between related steams. The penalty with this scheme is the overhead associated

with data combination and redistribution. These layouts are also called homogeneous (non-

interleaved) and heterogeneous (interleaved) layouts [17]. The homogeneous layout stipulates

storage of single medium data in blocks without interleaving. However, timing relationships

among media are stored as part of the interrelated media.

In the homogeneous approach, each medium requests a session in a round-robin schedule.

When retrieving a multimedia object, the file system must switch between sessions which

can consume additional disk bandwidth and degrade throughput. There is no such problem

in the heterogeneous approach. We merge different media data within a block based on their

temporal relationships and can treat the aggregation of data as a single media object. There-

fore, there is only one session for each multimedia object for the heterogeneous approach.

For this reason we use the heterogeneous layout approach in this work. In our approach,

multiple media streams being recorded are stored within the same block and the length of

each object is proportional to its consumption rate.
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In terms of intra-media timing, interleaving of data becomes important to maintain

smooth, gap-free playout. In the extreme case, contiguous space allocation yields the highest

effective bandwidth from a disk, but with a penalty for costly reorganization during data

insertions and updates:

1. With the interleaved policy, multimedia data are stored on disk in a interleaved fashion

[16, 17, 21, 23]. This approach can guarantee continuous retrieval and smooth the

speed gap between disk and multimedia devices. Therefore, it can reduce the buffer

requirement significantly. Usually, it can be applied on optical disks or in a single user

environment.

2. With the contiguous policy, multimedia data are stored on a disk contiguously. This

policy can also provide continuous retrieval, but entails enormous copying overhead

during insertions and deletions [16]. However, it is the most efficient method to utilize

bandwidth [14]. This approach can be used for data that are seldom modified such as

read-only digital entertainment video.

In our approach, we refine the contiguous scheme using a two-tiered structure. On the

first level, we propose a doubly-linked list which is created based on the temporal relations

for a multimedia object [11]. Each item in the list contains a pointer which points to the

disk address of a media block. The reason for the doubly-linked list structure is to support

reverse playback of multimedia objects. On the second level, we store the multimedia data

that are indicated in the first level, permitting the reversal of a multimedia presentation

at any moment. Multimedia objects are stored sequentially on the disk. Subsequent media

blocks are put on adjacent, unoccupied blocks. If a disk track or cylinder becomes full (or the

next block is occupied) this policy places the multimedia data in the next nearest available

block.

3 Disk Latency and Bandwidth

To support multimedia data requires the manipulation of large files and the support for

large data consumption rates. It is the responsibility of the file system to organize the

data for efficient storage and delivery within space and I/O bandwidth limitations. In most

disk drive subsystems, the dominant inhibitor to achieving maximum disk I/O bandwidth

is seek latency. However, seek latency can be reduced through contiguous writes or reads of
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Table 2: Disk Parameters

Symbol Identification Value Units
Sdt Size of a single track 54,900 bytes
Nhead Number of tracks in a cylinder (number of disk heads) 15 tracks
Thh Time to change head to the another surface 2,000 µs
Ttt Time to cross a track 21 µs
Tstart Seek start-up time 11,000 µs
Trot Rotation time for a disk 16,700 µs
Rt Data transfer rate within a track 3.29 Mbyte/s
c Number of cylinders per disk 2,107 cylinders

time-dependent multimedia data. When these data become fragmented and discontinuous,

effective disk bandwidth diminishes due to additional seek and rotational latencies involved

in each discontinuity.

In our modeling approach, we consider latencies attributed to data fragmentation as

well as session switching latencies. In the proposed scheduling approach, the disk is cycled

through a set of independent multimedia sessions. Because sessions exist for many cycles

and their access is unpredictable due to user interaction (e.g., start, stop, reverse), there are

significant session switching latencies. In this section, we determine these disk latencies and

their distributions through analysis for a typical hard disk storage unit suitable for a Unix

workstation [19]. Parameters characterizing such a device are summarized in Table 2 using

symbols adopted and extended from Kiessling [10].

3.1 Seek Delay Latency

When a user edits the multimedia file or the file system schedules another process to access

the disk, the next block to be retrieved can be arbitrarily located anywhere on the device. The

disk head must start up, cross a number of tracks, switch to a recording (writing) surface and

rotate to the indicated block. Assuming that the location of the desired block is uniformly

distributed on the whole disk, then the total latency is Tlatency = Tcross + Tswitch + Trotate,

where Tcross is the arm positioning time for the disk head move to the correct track, Tswitch

is the delay to switch the head to the other surface, and Trotate is the delay for disk rotation.

We have derived various statistical disk performance behaviors from these base parameters,

and summarize them in Table 3.

7



Table 3: Derived Statistical Disk Behavior

Symbol Equation Value Units
Tlatency = Tcross + Tswitch + Trotate ms
E(Tcross) ∼= 1

3
c × Ttt + Tstart 25.7 ms

σ2
cross

∼= c2

18
T 2

tt 108 ms2

σcross
∼= c√

18
Ttt 10.4 ms

E(Tswitch) = Nhead−1
Nhead

Thh 1.86 ms

σ2
switch = T 2

hh
Nhead−1

N2

head

∼= T 2

hh

Nhead
0.27 ms2

σswitch
∼= Thh√

Nhead
0.51 ms

E(Trotate) ∼= 1
2
Trot 8.35 ms

σ2
rotate

∼= 1
3
T 2

rot 92.96 ms2

σrotate
∼= 1√

3
Trot 9.64 ms

E(Tlatency) ∼= 1
3
c × Ttt + Tstart + Nhead−1

Nhead
Thh + 1

2
Trot 35.9 ms

σ2
latency

∼= c2

18
T 2

tt +
T 2

hh

Nhead
+ 1

3
T 2

rot 201.6 ms2

3.2 Disk Bandwidth Normalization

In an ideal disk storage organization, data can be accessed without latencies, and the data

transfer rate (or bandwidth) is dependent only on the disk rotational speed. In a real disk,

latencies are introduced due to track and platter switching, and disk rotation. These latencies

are determined by the layout of data on the disk and the scheduling policy for their access.

We can normalize the data transfer rate based on a complete disk scan policy as follows:

once the head reaches and retrieves the first block of an object, it retrieves the adjacent block

in the same track. If the whole track has been retrieved, it switches to the next surface but

remains on the same cylinder. If the whole cylinder has been retrieved, the disk arm crosses

to the next track. We normalize by considering each of these head motions in the complete

scan.

We define the size of a block as M . The frequency for switching the head to the other

disk Pswitch is

Pswitch =
M

Sdt

The size of a cylinder is Sdt × Nhead. Thus, the frequency Pcross for the arm to cross to

the next track is Pcross = M
Sdt×Nhead

. Let TM be the time to transfer a block from disk in the
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optimal case. Then

TM =
M

Rt

+
M

Sdt

Thh +
M

Sdt × Nhead

[Tstart + Ttt] = M × T

T represents the minimum transfer time to transfer a single byte from the disk:

T =
1

Rt

+
1

Sdt

Thh +
1

Sdt × Nhead

[Tstart + Ttt]

Let R = 1
T

be the maximum transfer rate onto the disk. We normalize the disk bandwidth

R as:

R =
1

1
Rt

+ 1
Sdt

Thh + 1
Sdt×Nhead

[Tstart + Ttt]
(1)

Therefore, we can use this derived value as the maximum effective bandwidth for data

transfer from the disk.

4 Disk Access Scheduling

In this section we show the constraints for the acceptance of a set of multimedia sessions

and the requirements for buffer size and disk bandwidth.

4.1 Scheduling Layout Model

In the layout model of Polimenis [14], a working period Tperiod is defined for a set of multi-

media tasks and other non-real-time tasks as shown in Fig. 2.

During a working period, the schedule switches among all multimedia sessions. It carries

enough data into the buffer for the ith session to keep task i busy until its term is active

in the next working period. If R is the whole disk bandwidth that we derived in Equ. 1,

then each session i shares an interval T (i) proportional to its consumption rate Rc(i). The

amount of data accessed during T (i) is equal to the amount consumed during the period

Tperiod as follows:
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period

latency 1 latency 2 latency 3 leftover

session 1 session 2 session 3

playback recording

Figure 2: Layout Model

T (i) =
Rc(i)

R
Tperiod (2)

In this equation, Rc(i) represents the consumption rate for session i. Let the ith session

contain k different media data (video, audio, text, etc.). For viable multimedia data delivery,

the bandwidth lost due to task switching latencies plus the bandwidth consumed by each

multimedia session must be less than the normalized disk bandwidth (where the period is

fixed unless we change the number of sessions).

4.2 Bandwidth Requirements

In this section, we derive the bandwidth constraint based on the round-robin scheduling

model. Let n(i) be the number of bytes accessed for medium i during a working period

Tperiod. The total number of bytes n to be read during a period Tperiod is then
∑m

i=1 n(i).

Because the time interval T (i) for each media is proportional to its bandwidth requirement

and n(i) = T (i) × R. Thus, we have n(i) = Tperiod × Rc(i), then

n(1)

Rc(1)
=

n(2)

Rc(2)
= ... =

n(i)

Rc(i)
(3)

As shown in Fig. 2, the total interval used for multimedia sessions plus the disk seek

latency should be less than the working period Tperiod in order to have sufficient bandwidth

for other non-real-time tasks. On the other hand, the period Tperiod must be greater than the

time needed in the worst case to transfer data from (or to) the disk for all sessions. Suppose

we have m multimedia sessions. Let R be the total disk bandwidth and Tlatency(i) be the

task switching latency between sessions i − 1 and i. Then,
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n

R
+

m∑

i=1

Tlatency(i) < Tperiod =
n(i)

Rc(i)
(4)

where n(i)
Rc(i)

should be equal to Tperiod to maintain a steady-state. This means that the

amount of data read from the disk for each session i during a period is exactly equal to the

amount of data consumed by the ith consumer process. Thus, by Equ. 4,

R >
n

n(i)
R(i)

− ∑m
i=1 Tlatency(i)

=
1

n(i)
n

1
R(i)

−
∑m

i=1
Tlatency(i)

n

Since, n(i)
n

= Rc(i)∑m

i=1
Rc(i)

, then

R >
1

Rc(i)∑m

i=1
Rc(i)

1
R(i)

−
∑m

i=1
Tlatency(i)

n

=
1

1∑m

i=1
Rc(i)

−
∑m

i=1
Tlatency(i)

n

The right-hand side of the above equation can be divided into two parts. The first part

is the bandwidth requirement of all multimedia sessions. The second part is the factor due

to the seek latency between any two sessions. Thus,

R >
m∑

i=1

Rc(i) + Rseek (5)

and

Rseek =
(
∑m

i=1 Rc(i))2 × ∑m
i=1 Tlatency(i)

n − ∑m
i=1 Rc(i) × ∑m

i=1 Tlatency(i)
(6)

The Rseek is the bandwidth wasted, or lost, when the disk head is switched between

sessions.
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Figure 3: Buffer Consumption

4.3 Buffer Requirements

In Section 4.1, we showed the bandwidth requirements for a set of multimedia sessions

without considering their acceptability in terms of buffer utilization. In the layout model,

each session i shares only part of a period (Fig. 2). Each session must carry enough data

into the buffer to keep process i busy until it is reserviced, otherwise, the process starves.

Therefore, the second condition to accept a set of multimedia sessions is the availability of

sufficient buffer space. As illustrated in Fig. 3, session i shares a duration T (i) in a disk

access.

When session i is active, its buffer size increases at a rate R−Rc(i). Outside this duration,

the buffer size shrinks at a rate Rc(i). Let B(i) be the buffer requirement for session i. Then

B(i) > (R−Rc(i))× T (i), or B(i) > Rc(i)× (Tperiod − T (i)). If we let B be the total buffer

requirement, then B >
∑m

i=1[(R − Rc(i)) × T (i)]. Rewriting, we get:

B >
m∑

i=1

[Rc(i) × (Tperiod − T (i))] (7)

Therefore, we have defined the buffer constraint that can be applied to determine the

feasibility of adopting additional multimedia sessions.
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4.4 Length of Period Tperiod

In Fig. 2 and Equ. 4, we show that the period Tperiod must be greater than the sum of all

individual session periods in order to transfer data from (or to) disk for all sessions. Let D

be the leftover duration as shown in Fig. 2. For each period, the disk spends Ttransfer to

transfer data, where Ttransfer = Tperiod −
∑m

i=1 Tlatency(i) − D. In a period, session i shares

T (i) duration based on its consuming rate Rc(i). Therefore,

T (i) = [Tperiod −
m∑

i=1

Tlatency(i) − D] × Rc(i)
∑m

i=1 Rc(i)

To maintain a steady-state for the system, the data read from the disk during T (i) for

session i must be equal to the amount consumed during the period Tperiod. Otherwise, the

buffer can starve or grow without bound. Thus,

Tperiod >
m∑

i=1

Tlatency(i) ×
R

R − ∑m
i=1 Rc(i)

= T (8)

If we let U be the utilization, where U = R/
∑m

i=1 Rc(i) and let C be the total latencies,

then the minimum period for a set of multimedia sessions is [14]:

Tmin
period =

C

1 − U
(9)

In Equ. 8, Tlatency(i) represents the seek latency corresponding to the switch from session

i − 1 to session i. Because the next retrieval for session i can be allocated anywhere on

the disk, the latency Tlatency is a random variable. In Section 3, we derive the average seek

latency and the variance of the seek latency. Let E(Tlatency) be the average seek latency and

σ2
latency be the variance of seek latency (Table 3). The expectation E(T ) and variance σ2(T )

of T in Equ. 8 are as follows:

E(T ) = m × E(Tlatency) ×
R

R − ∑m
i=1 Rc(i)

σ2(T ) = m × σ2
latency ×

R

R − ∑m
i=1 Rc(i)
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By the above equations, we know T is also a random variable, so we cannot assign T to

be the lower bound of the period Tmin
period. Let p be the probability of starvation that can be

tolerated for the mth session. By Chebychev’s Inequality we have P [|Tmin
period −E(T )| > k] ≤

σ2(T )
k2 = p, and therefore,

Tmin
period ≥ E(T ) +

σ(T )√
p

(10)

This means that if the lower bound Tmin
period is chosen, the probability for the mth session

to be accepted successfully is greater than 1 − p.

By Equ. 10, if we choose Tperiod equal to the lower bound E(T ) + σ(T )
√

p
, we can guarantee

that the starvation rate for session m will be less than p. Equation 10 is always true; however,

it does not mean that the starvation rate is equal to p. In the heavy load situation, when the

number of multimedia sessions m is very large, by the Law of Large Numbers, the starvation

rate will approach p. In the light load case, the starvation rate can be much lower than p.

Conversely, we can use a shorter period Tperiod to keep the starvation rate under p.

A period Tperiod for a set of multimedia sessions must meet two hard requirements. In

Section 4.2, we derived the bandwidth requirement, but it was not sufficient to determine

whether to accept a set of multimedia sessions. The system must also provide sufficient

buffering for each multimedia session. In the lightly loaded situation, there are always

enough buffering to support multimedia sessions. However, buffering becomes significant

when the number of multimedia sessions m is large. In this case, compared to the period

Tperiod, the duration T (i) assigned to each multimedia session is small. We simplify Equ. 7

by ignoring the T (i) and the result is still valid:
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B ∼= Tperiod ×
m∑

i=1

Rc(i) (11)

From the equation above, we see that the buffer requirements are dependent on the length

of period Tperiod. Let Bmax be the maximum buffer space that is available. There is an upper

bound Tmax
period for the period that can be accepted for a set of multimedia sessions; otherwise,

the total buffer requirements will exceed the available buffer space Bmax. From Equ. 11, we

have:

Tmax
period =

Bmax

∑m
i=1 Rc(i)

(12)

Equs. 10 and 12 derived above are for the general case where the consumption rates

for multimedia sessions have different values. In real applications, the disk bandwidth re-

quirements for multimedia sessions can have the same value. In the following example, we

assume, for simplicity, that the consumption rates for all multimedia sessions are the same

and evaluate the buffer consumption and number of sessions supported.

Example 1 In this example, we assume all multimedia sessions request the same disk

bandwidth Rc. Each multimedia session includes video data at a rate of 1.92 Mb/frame

@ 30 frames/s with a 20:1 compression ratio and audio data at a rate of 1.4 Mb/s with a

4:1 compression ratio. Each multimedia session consumes disk bandwidth at a rate of 0.4

Mbyte/s. Using the disk parameters from Tables 2 and 3 we pick the average disk latency

E(Tlatency) equal to 35, 965µs and the standard deviation σlatency equal to 14, 212µs. For

Equ. 10 we let p be 0.05. We then derive the lower bound for different numbers of supported

sessions using Equ. 10 assuming the availability of 16 Mbytes of main memory that can be

assigned for buffering. The upper bound of a period is then determined by Equ. 12.

Let N be the number of multimedia sessions and Tmin
period be the lower bound for the period.

If Tmin
period is chosen then there is no disk bandwidth left. By Equ. 7 we know that the buffer

requirement is minimized and we have

B =
N∑

i=1

{Rc(i) × [Tmin
period −

Rc(i)

R
Tmin

period]}

= N × Rc × Tmin
period × (1 − Rc

R
)
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Table 4: File System Performance for Example 1

100 % Bandwidth Utilization 100 % Buffer Allocation
N Tmin

period (ms) Buffer Allocation (bytes) Tmax
period (ms) Bandwidth Utilization

1 86 29,000 40,000 16.35 %
2 213 143,000 20,000 32.88 %
3 385 386,000 13,333 49.58 %
4 706 946,000 10,000 66.48 %
5 1,577 2,641,000 8,000 83.75 %
6 14,013 * 28,163,000 6,667 * 100.80 %

* Insufficient memory.
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Figure 5: Number of Sessions vs. Period Length
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The results of this analysis are summarized in Table 4. The third column presents the

buffer requirement for N multimedia sessions when we chose Tmin
period. The fourth column

indicates the upper bound for period. In this case, the entire 16 Mbytes of memory are

assigned to buffering, allowing us to minimize the use of disk bandwidth given the constraints.

In our layout model, a period Tperiod is equal to the sum of all durations assigned to

multimedia sessions plus the session switching latency between sessions plus the leftover used

for other non-real-time process (Fig. 2). The percentage P of disk bandwidth consumed by

multimedia sessions can be considered as the interval assigned to the multimedia sessions,

plus disk latency lost in task switching between multimedia sessions, divided by the length

of the period:

P =

∑N
i=1 T (i) +

∑N
i=1 Tlatency(i)

Tmax
period

=
N × Tperiod

Rc

R
+ N × Tlatency

Tmax
period

In the fifth column of Table 4 we show the percentage of disk bandwidth consumed by

the multimedia sessions when the upper bound Tmax
period is chosen.

When we increase the number of supported sessions, both buffer and bandwidth require-

ments will increase (Fig. 5). If there are five multimedia sessions accessing the file system,

the system can perform within these constraints, but it cannot accept additional multimedia

sessions. In this case an additional session causes the request for a 28,163,000 byte buffer

and 100.8% of disk bandwidth, both of which exceed the capacity of the system.

5 Discussion

From the analysis presented in Sections 3 and 4, it is appropriate to describe considerations

for choosing the length of a round-robin scheduling period, and to describe the impact of

session consumption rates.

5.1 Consideration for Choosing a Period

Two hard requirements must be met when choosing the length of a period, otherwise the

system cannot function for a given workload. A period must be greater than Tmin
period to meet

the bandwidth requirement and less than Tmax
period to meet the buffer requirement. These

constraints are summarized as:
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Tmax
period > Tperiod > Tmin

period (13)

A new multimedia session can be accepted only it satisfies this relationship. Fig. 5 illus-

trates the ranges of sessions supported that satisfy these constraints. The region enveloped

by the lower bound and upper bound is safe. In Table 4, for the sixth session, the lower bound

of period Tmin
period is 14, 013 ms, the upper bound Tmax

period is 6, 667 ms. Since Tmin
period > Tmax

period,

we know the file system cannot accept six multimedia sessions at the same time.

We estimate the upper and lower bound very conservatively (due to the large m assumed).

The real upper bound can be larger and the lower bound can be lower than we have derived.

However, when the number of sessions increases, our estimates approach the real upper and

lower bounds. There are two justifications for our assumption. First, in the lightly loaded

case, there are always enough resources for use. We are more concerned about the heavily

loaded situation in which the number of multimedia sessions m is large. Second, it is not

necessary or wise to chose a period Tperiod close to either the upper or lower bounds because

of the degradation of the throughput of other non-real-time data transfers. For a general-

purpose machine, a multimedia file system not only has to meet the hard requirements

above, but also must leave enough bandwidth for these other non-real-time transfers. Let

A = D/Tperiod be the the percentage of disk bandwidth used to read data from the disk

for non-real-time jobs during every period Tperiod. For a set of multimedia sessions, A is

maximized when Tperiod = Tmax
period [14]. This means if we increase the period Tperiod we can

have additional disk bandwidth leftover for non-real-time tasks.

From a memory perspective, a multimedia file system must minimize its buffer utilization

to make memory available for other system tasks. From Equ. 11, we see that when period

Tperiod = Tmin
period, the buffer requirement is minimized. From the above two results, we seek

to increase the period for more disk bandwidth for non-real-time traffic but also to reduce

the period for more free memory for non-real-time tasks. In the extreme case, if we minimize

the Tperiod value, we minimize the buffer requirement and maximize free memory for other

non-real-time tasks. At the same time, the leftover for disk bandwidth is zero. Similarly,

maximizing the Tperiod can free the maximum disk bandwidth for other non-real-time pro-

cesses to use but will also result in complete memory consumption. In this case, even if the

disk has ample bandwidth available, no non-real-time process can use it. Thus, these two

soft requirements are in conflict.

To improve the response time for non-real-time processes, we can change the period

18



Tperiod dynamically with feedback from the operating system to balance resource allocation.

For example, if there are tasks suspended due to disk bandwidth shortages and there is free

buffer space available, the file system can extend the period Tperiod in order to have more disk

bandwidth to assign to non-real-time processes. If there are non-real-time processes waiting

for memory and the disk is idle during the leftover interval, the file system can shrink the

period Tperiod in order to free memory for additional non-real-time processes.

Table 5: Refined Model vs. Worst Case

Refined Model Worst Case
N Period (ms) Buffer Allocation (bytes) Period (ms) Buffer Allocation (bytes)
1 104 35,000 86 29,000
2 214 144,000 213 143,000
3 385 386,000 421 423,000
4 706 946,000 823 1,103,000
5 1,577 2,641,000 1,924 3,222,000

For a multimedia on-demand server, the file system need only provide service to mul-

timedia processes. In this situation, we chose the lower bound to achieve the highest disk

utilization. Given the physical disk characteristics we can determine the buffer requirements.

By Fig. 3 and Equ. 7, we know that the amount of consumed buffer space is determined by

the period length Tperiod. By Equ. 8, the period length depends on the sum of random vari-

ables Tlatency(i). We assume the worst case, take the maximum value for all task switching

latencies Tlatency(i), and decide the period length. This assumes that starvation can never

happen, when in practice it will only rarely happen. In a refined model, we define an ac-

ceptable rate q = 1 − p of non-starvation, and derive the period length which guarantees a

set of multimedia sessions can be accepted with at least a probability q of not starving. In

Table 5, we define q = 95%. In this case, if there are five multimedia sessions in the system

we can save 20.8% of available memory.

5.2 Consumption Rate for Multimedia Sessions

There are several factors that effect the consumption rate for a multimedia session. The most

important factor is the data compression ratio affecting the multimedia data. For example,

for video data, a compression ratio in the range of 1:10 to 1:100 is not uncommon.

In Fig. 6, we show a set of constrained bandwidth-buffering regions for sessions with
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differing data rates due to a range of compression rates. Parameters are otherwise identical

to that of Example 1. This figure illustrates the safe region for various consumption rates

and allows the selection of period length Tperiod and buffer use for a given number of sessions.

By varying the compression rate we can reduce the bandwidth required for any (video)

session and increase the number of multimedia sessions supported per device. Assuming

a uniform bandwidth requirement for each session, Fig. 7 shows the number of sessions

supported for a range of consumption ratios (bandwidth).

5.3 Variable Video Encoding Rates

In our analysis we have assumed constant-bit-rate (CBR) video encoding. This assumption

greatly simplifies analysis and is reasonable based on the MPEG-I ISO 11172 CBR op-

tion. However, we recognize that CBR video is not ubiquitous. Our model can be modified

to accommodate variable-bit-rate (VBR) compression schemes by aggregating several VBR

streams together [3]. For this situation, not only is the disk production rate unpredictable

but the display consumption can be unpredictable as well, particularly if software-only de-

compression of video is used. We view disk seek latencies and the transfer time of VBR
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streams as random variables and use a similar probabilistic model to guarantee that the

frame loss ratio will be under a given threshold. Moreover, in a related work, we describe

an algorithm to reduce the impact of frame losses due to disk starvation [3].

6 Conclusion

When a multimedia file system transfers data from a disk, it must guarantee that multimedia

data arrive at the playout device with a minimum latency. It must also satisfy the timing

requirements implied by the nature of the multimedia object (e.g., synchronization among

media). However, disk seek latency can be very significant and is unpredictable in a general-

purpose file system.

In this paper we presented a physical data organization for supporting the storage of

time-dependent multimedia data. We interleaved different media objects within a block

to maintain timing among the objects during data storage and retrieval. Furthermore, we

introduced a probabilistic model as a refinement of the round-round scheduling discipline

that supports concurrent multimedia sessions. It was found to reduce the amount of re-
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quired buffering during data transfer from storage. We showed the acceptance conditions

for additional multimedia sessions including bandwidth and buffer constraints, and a means

for balancing these two parameters to support the largest number of multimedia sessions

originating from a single device.
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